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The recent articles [1–3] by Professor Gorman extending the building blocks based superposition method to
the analysis of in-plane vibration of plates are useful and welcome additions to the literature. The method has
been successfully applied to analyse out-of-plane vibrations of plates [4–6] and vibration of open cylindrical
shells [7–9], including a wide range of complicated systems such as triangular and parallelogram plates,
orthotropic plates, Mindlin plates, plates with elastic supports, point supported plates, laminated plates and
plates under in-plane forces [4]. The superposition method is elegant in terms of mathematical basis and
physical interpretation. For the systems investigated in the literature, its rate of convergence is excellent. It
may be regarded as one of the most significant contributions to the field of vibration of continuous systems in
the recent decades. The purpose of this communication is to consider the question of whether this method
gives bounded results: a question this discusser finds interesting for the following reason.

The Rayleigh–Ritz method is widely used in calculating the natural frequencies of continuous systems.
A drawback of this method is that while it gives an upper bound result for the frequencies, the error due to
discretisation cannot be calculated easily. It would be good if the superposition method could be used to
obtain lower bound results in which case it would nicely complement the Rayleigh–Ritz method. This appears
to be the case when using building blocks that are less constrained than the system being modelled as can be
explained from the following considerations.

Consider a system A, which is modelled by applying the superposition method with n building blocks each
of which contributing K terms. For convenience let us label a contributing subsystem drawn from the
ith building block in its mth mode as Bi,m, where i ¼ 1,2,y, n, and m ¼ 1,2,y,K. These subsystems are
considered as systems subject to frequency-dependent boundary actions (prescribed driving forces or driving
moments or prescribed driving translations or rotations) which are applied in such a way as to satisfy the
boundary conditions of A approximately using a weighted average approach:

A �
Xn

i¼1

XK

m¼1

ai;mBi;m.
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For the systems investigated by Gorman [1–6] it seems possible to select Bi,m so that as

K !1;
Xn

i¼1

XK

m¼1

ai;mBi;m ! A.

Let the system defined by the truncated solution in the superposition method be A0K where K is the number of
terms in the series. Thus

A0K ¼
Xn

i¼1

XK

m¼1

ai;mBi;m.

System A0K may be regarded as an intermediate system that is governed by the same equation of motion as
A and Bi,m, but which is subject to boundary conditions that are different from those of A. The eigenvalues
derived from the superposition method would be exact for system A0K if the functions used in the base
problems exactly satisfy the equation of motion in the system domain. This means the superposition method
gives exact solution to a problem subject to boundary conditions that are slightly different from those of A. If
the differences are only in the boundary conditions, the question then arises, whether these differences result in
an increase or decrease in the natural frequencies.

If none of the boundary conditions of the base problems Bi,m is stiffer than that of the corresponding
boundary in A, it is suggested that A0K would be a Weinstein’s intermediate problem [10] for A, resulting in
lower bound values for the natural frequencies. Assuming that the application of forces or moments to
boundaries of the building blocks Bi,m which are less constrained than the actual system A being modelled
corresponds to solving a problem where the constraints are replaced with elastic restraints of positive stiffness,
this is also to be expected from the existence and convergence theorems [11] or from Rayleigh’s theorem of
separation [12]. On the other extreme, if all boundary conditions of the base problems Bi,m are stiffer than
those of the corresponding boundaries in A then the natural frequencies of A0K would be upper bound to the
natural frequencies of A.

The above arguments suggest that in cases where the superposition method is based on building blocks
whose boundary conditions are more flexible than those of the system being modelled, the results give a lower
bound estimate of the natural frequencies. This would be the case when modelling clamped plates using
building blocks consisting of simply supported boundaries subject to driving forces or translations, or slip-
shear boundaries subject to driving moments or rotations. In cases where the building blocks are subject to
stiffer conditions at the boundaries, upper bound results may be expected. In cases where the boundary
conditions are of mixed type, it is not possible to conclude from the above reasoning whether the results would
be upper bound or lower bound. In making the above suggestions, it is assumed that the systems subject to
driving forces or moments may be regarded as being subject to corresponding elastic restraints and may be
treated as Weinstein’s intermediate problems.

It would be good if these can be verified numerically but results published so far do not provide sufficient
information for this. Perhaps due to the rapid convergence of the solution, the variation of frequencies with
number of terms in a building block has been reported only in some of the publications. The variation of
natural frequencies of a completely free square plate with number of terms in a building block (K) is shown
graphically in Fig. 1.5 of Ref. [4]. The building blocks used have boundary conditions that are stiffer than the
system being modelled, and the third natural frequency decreases or remains unchanged with increasing
number of terms, suggesting that the results are upper bound as discussed. If results are readily available, it
would be useful if Professor Gorman or other users of the method could verify the predictions made here.
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